The Master Equation for the Dissociation of a Dilute Diatomic Gas. VIII. The Rotational Contribution to Dissociation and Recombination

Author:

Ashton Tom,McElwain D. L. S.,Pritchard H. O.

Abstract

The dissociation of the J = 21 state of H2, and the recombination of atoms into that state, have been examined in detail. The J = 21 state of H2 has two quasi-bound levels, one long-lived and the other short-lived, but the rate constants for dissociation or recombination involving this state are almost completely independent of the tunnelling rates into and out of the quasi-bound levels, and are in fact determined by bottleneck effects occurring lower down the vibrational ladder. Direct integration of the relaxation equations shows that, either excluding or including tunnelling, the dissociation and recombination rate constants obey the rate-quotient law, and that in the latter case the lowest eigenvalue of the relaxation matrix properly reflects the pressure dependence of the dissociation rate constant. Less extensive examination of the dissociation properties of other rotational states indicates that these conclusions are general, except that there is no strong bottleneck effect for very high rotational states (J ≥ 30).It is shown that if full rotational equilibration is assumed, the sum, weighted over all J, of the individual dissociation rate constants leads to an overall dissociation rate constant which is much too high, suggesting strongly that rotational equilibration cannot occur amongst the very high J states.A factored form of the master equation is then examined in which either only T–V or only T–R processes take place, over the temperature range 1500–5000 °K. It is found that in this approximation the upper rotational states are very strongly depleted, and that the Arrhenius temperature coefficients of the dissociation rate constants are between 92 and 94 kcal mol−1, depending upon the choice of rotational transition probabilities. The calculation suggests that one contributory cause of "low activation energies" in dissociation reactions is strong rotational depopulation of the very high rotational states, and its importance in relation to other possible causes is discussed.The smallest eigenvalues of the 177th order matrix representing the dissociation of para-H2 and of the 172nd order matrix representing the dissociation of ortho-H2 confirm that the factored model gives an acceptable representation of the dissociation rate of H2 in this temperature range; hence the conclusions of the factored model in respect of strong rotational depopulation are probably valid. Finally, it is shown that the second smallest eigenvalue of the full relaxation matrix changes by a factor of three at 1500 °K or by a factor of ten at 5000 °K when only rotational transition probabilities are varied, thus identifying the relaxation which immediately precedes the dissociation reaction in a shock wave as a T–VR rather than a T–V relaxation.An exploratory series of calculations for deuterium was carried out for the range of temperatures 700–5000 °K, using the latter model which includes full coupling between rotation, vibration, and dissociation, i.e., using matrices of order 348 and 355 for ortho- and para-deuterium, respectively. These calculations predict that there should be a reversal in the isotope effect for both dissociation and recombination of hydrogen and deuterium as follows: (i) with helium as third body, deuterium should dissociate faster than hydrogen at high temperatures, but below about 2000 °K, the dissociation of deuterium will become the slower of the two processes; (ii) with argon as third body, deuterium should recombine faster than hydrogen at high temperatures, but below about 1000 °K, the recombination of deuterium will become the slower of the two processes; (iii) the rate constants for the recombination of hydrogen by hydrogen and for the recombination of deuterium by deuterium will probably cross over near 1000 °K, indicating a need for experiments in this region of temperature.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3