The 2003 Canadian Geotechnical Colloquium: Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling

Author:

Diederichs Mark S.1

Affiliation:

1. GeoEngineering Centre at Queen’s University and RMC, Department of Geological Sciences and Geological Engineering, Miller Hall, Queen’s University, Kingston, ON K7L 3N6, Canada (e-mail: mdiederi@geol.queensu.ca).

Abstract

Spalling and strain bursting has long been recognized as a mechanism of failure in deep underground mines in hard rock and in deep infrastructure tunnels. The latter is a significant growth industry, particularly in Europe where subalpine base tunnels in excess of 10 m wide and dozens of kilometres long are being driven by tunnel boring machine (TBM) through alpine terrain at depths greater than 2 km. In more massive granitoid or gneissic ground, these tunnels have experienced significant spalling damage. En route to a practical predictive technique for this condition, the author utilizes a number of analytical and micromechanical tools to validate a simple empirical predictive model for tunnel spall initiation. The true nature of damage and of yield, as the result of extensile damage accumulation, in hard rocks is examined using these tools. Based on the resultant conceptual model, the author expands on the empirical damage threshold, using a spalling limit to differentiate stress paths that lead to crack propagation and spalling from those that incur stable microdamage prior to conventional shear failure at higher relative confinements. Finally, the composite and robust in situ yield model is applied to nonlinear modelling for support design.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference78 articles.

1. Aglawe, J.P. 1999. Unstable and violent failure around underground openings in highly stressed ground. Ph.D. thesis, Mining Department, Queen's University, Kingston, Ont.

2. The failure of brittle solids containing small cracks under compressive stress states

3. Engineering classification of rock masses for the design of tunnel support

4. Micromechanical Aspects of Isotropic Granular Assemblies With Linear Contact Interactions

5. Bieniawski, Z.T. 1989. Engineering rock mass classification. John Wiley & Sons, New York.

Cited by 462 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3