Entanglement entropy of Compton scattering with a witness

Author:

Shivashankara Shanmuka1ORCID

Affiliation:

1. Colgate University, Department of Physics and Astronomy, Hamilton, NY, USA

Abstract

Unitarity and the optical theorem are used to derive the reduced density matrices of Compton scattering in the presence of a witness particle. Two photons are initially entangled wherein one photon participates in Compton scattering, while the other is a witness, i.e., does not interact with the electron. Unitarity is shown to require that the entanglement entropy of the witness photon does not change after its entangled partner undergoes scattering. The final mutual information of the electron's and witness particle’s polarizations is shown to be nonzero for low-energy Compton scattering. This indicates that the two particles became correlated in spite of no direct interaction. Assuming an initial maximally entangled state, the change in entanglement entropy of the scattered photon’s polarization is calculated in terms of Stokes parameters. A common ratio of areas occurs in the final reduced density matrix elements, von Neumann entropies, Stokes parameter, and mutual information. This common ratio consists of the Thomson scattering cross-section and an accessible regularized scattering area.

Funder

Colgate University Research Council

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3