Effects of magnetic field on spin–orbit-coupled f = 1 spinor condensate in a toroidal trap

Author:

Zhao Qiang1ORCID

Affiliation:

1. Department of Applied Physics, North China University of Science and Technology, Tangshan 063210, China

Abstract

In this paper, we study the dynamic properties of spin–orbit coupling (SOC) hyperfine f =1 spinor antiferromagnetic Bose–Einstein condensates with the external magnetic field. The condensate is confined in a toroidal trap and the numerical results are obtained based on the multicomponent Gross–Pitaevskii equation. Our results show that, in the presence of SOC, the spin dynamics for zero magnetic field slows with an increase of radius of the torus. However, this process accelerates when the magnetic field is considered. In addition, in this case, the oscillation behavior is almost consistent with the considered maximum radius. In the absence of SOC, the periodicity of spin dynamics vanishes. We also compare the thermalization time for different magnetic fields and radii, which decreases considerably for nonzero magnetic fields with the increase of radius. Furthermore, our analysis suggests that for stronger magnetic field strength the density structure can be regulated. As a consequence, the condensate recovers from the necklace to an annular-shaped state.

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3