Author:
Kowles R. V.,McMullen M. D.,Yerk G.,Phillips R. L.,Kraemer S.,Srienc F.
Abstract
A group of 35 defective kernel (dek) mutants in maize has been studied with regard to their effect on endosperm development. Information is reported on kernel weight, kernel viability, mutant transmission, DNA content per endosperm nucleus, endosperm cell numbers during development, and DNA endoreduplication patterns. All of the dek mutations reduced mitotic activity and resulted in greatly reduced cell numbers. All except one mutation decreased DNA endoreduplication. The exception indicates that the processes of mitotic activity and endoreduplication can be uncoupled. Notable differences in DNA endoreduplication patterns were observed among the dek strains. Defective kernels with homozygous defective embryos did not germinate in any of these strains, although some morphologically defective kernels did germinate and were shown to have normal embryos of +/+ or +/dek genotype. Dek mutants that had a defective endosperm and an embryo that developed normally were not identified. The mutations investigated are recessive, but F2 segregation for many of the mutants revealed significant deviations from expected 3:1 ratios.Key words: defective kernels, endosperm, endoreduplication.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献