Spatial genetic structure in populations ofQuercus mongolicavar.grosseserrata(Fagaceae) from southern Korea

Author:

Chung Mi Yoon,Chung Myong Gi

Abstract

Multilocus, putative allozyme genotypes were mapped and sampled from two local populations of Quercus mongolica Fischer ex Turcz var. grosseserrata (Bl.) Rehder & Wilson (Fagaceae) (each area is 100 m × 100 m, one with Sasa cover (N = 62) versus a second without it (N = 384)) occurring in undisturbed forests near Nogodan, Mount Jiri in southern Korea. Ripley's L-statistics and spatial autocorrelation analysis (a coancestry coefficient, fij) were used to test the prediction that because of low seedling establishment in a population with dense Sasa cover, there would be no spatial aggregation or hyperdispersion of individual trees and little evidence of fine-scale genetic structure in the population. As predicted, the Sasa-covered population showed no evidence of significant aggregation of individuals (P < 0.01) up to an interplant distance of 50 m and a random distribution of putative genotypes in the population. By contrast, the L-statistics conducted in the Sasa-free population indicated significant aggregation of individuals at interplant distances extending from 4 to 50 m. Spatial autocorrelation analysis revealed small but significant (P < 0.01), positive, fine-scale genetic structure extending from 10 to 30 m. A very similar result was obtained from 100 replicates each consisting of 62 trees in the Sasa-free populations by applying rarefaction and bootstrapping. These findings support the hypothesis that ground vegetation such as Sasa spp. has an impact on fine-scale genetic structure. The weak spatial genetic structure found in the Sasa-free population may primarily be due to limited acorn dispersal coupled with overlapping seed shadows and (or) secondary acorn dispersal by rodents.Key words: allozymes, Fagaceae, ground cover, Quercus mongolica var. grosseserrata, Sasa spp., spatial genetic structure.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3