Forskolin attenuates the action of insulin on the Akt–mTOR pathway in human skeletal muscle

Author:

Richmond Scott R.1,Touchberry Chad D.1,Gallagher Philip M.1

Affiliation:

1. Applied Physiology Laboratory, University of Kansas, Lawrence, KS 66045, USA.

Abstract

Forskolin (FSK) is capable of both stimulating and inhibiting the intracellular signaling pathways of protein synthesis tissues other than skeletal muscle. The purpose of this investigation was to determine if FSK administration affects various elements of the protein kinase B (Akt)–mammalian target of rapamycin (mTOR) pathway in human skeletal muscle. Ten (n = 10) healthy, young (21.6 ± 1.3 years), nonobese (body mass index = 25.5 ± 3.5 kg·m–2), recreationally active males were selected for participation. Following an 8 h fast, 2 muscle biopsies of the vastus lateralis were performed. The samples were sectioned and exposed to 4 in vitro treatment conditions: basal, FSK, insulin (INS), and FSK+INS. The samples were then analyzed for total and phosphorylated levels of Akt, mTOR, S6 kinase (S6K1), and 4E binding protein (4EBP1). Akt phosphorylation was significantly greater in the INS-treated samples compared with the basal and FSK conditions (p = 0.007). Furthermore, the ratio of phosphorylated Akt to total Akt (P/T) was higher in the INS samples compared with the basal and FSK samples (p = 0.001). There were no differences in mTOR phosphorylation among the 4 groups; however, total mTOR was significantly greater in the FSK+INS group (p = 0.006). There were also no differences in phosphorylated or total levels of S6K1 among the 4 groups. However, 4EBP1 phosphorylation was significantly greater in the INS-treated samples compared with the basal (p = 0.003) and FSK (p = 0.004) treatments. There were no differences in the ratio of phosphorylated 4EBP1 to total 4EBP1 (P/T) among the 4 groups. These results indicate that FSK does not activate the Akt–mTOR pathway in human skeletal muscle; however, these results suggest that FSK may inhibit the actions of INS on this pathway.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3