Author:
Bekkaoui Faouzi,Dunstan David I.
Abstract
Chemical permeabilization (polyethylene glycol, molecular weight 3350) and electropermeabilization (electroporation) treatments were applied to white spruce protoplasts to determine their effectiveness for uptake of membrane impermeable macromolecules. The two techniques have been compared using the membrane impermeable fluorescent dye calcein (molecular weight 622). The effects of varying the polyethylene glycol concentration, or the capacitance and voltage, were tested. In both techniques, the viability of protoplasts decreased after treatment compared with the controls. However, electroporation (capacitance 25 μF; voltage 300 V, 750 V•cm−1) gave better-permeabilization results (55% protoplast viability with 96% of these being fluorescent protoplasts) than the best treatment with polyethylene glycol (20%) (30% protoplast viability with 15% being fluorescent protoplasts). An investigation was made with the dye fluorescein isothiocyanate dextrans at different average molecular weights: 4000, 70 000, and 150 000. The degree of internalization by electroporation of each of these molecules did not substantially differ, though they were all low compared with calcein, which is suggestive of a limitation in permeability. The protoplasts subjected to either polyethylene glycol or electroporation treatments gave rise to callus and proembryos.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献