Shedding some light on cold acclimation, cold adaptation, and phenotypic plasticity

Author:

Hüner Norman P.A.1,Bode Rainer1,Dahal Keshav1,Busch Florian A.1,Possmayer Marc1,Szyszka Beth1,Rosso Dominic1,Ensminger Ingo2,Krol Marianna1,Ivanov Alexander G.1,Maxwell Denis P.1

Affiliation:

1. Department of Biology and The Biotron Centre for Experimental Climate Change Research, Western University, London, ON N6A 5B7, Canada.

2. Department of Cell and Systems Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.

Abstract

In the past, the role of light as an energy source was largely ignored in research focused on cold acclimation and freezing tolerance in plants. However, cold acclimation is an energy-requiring process. We summarize research illustrating that photoautrophs as diverse as cyanobacteria (Plectonema boryanum), green algae (Chlorella vulgaris, Dunaliella salina, Chlamydomonas raudensis), crop plants (Triticum aestivum L., Secale cereale L., Brassica napus L.), and conifers (Pinus banksiana) L.) tailor the structure and function of the photosynthetic apparatus to changes in temperature and irradiance to maintain cellular energy balance called photostasis. Modulation of either temperature or irradiance results in a similar imbalance in cellular energy that is sensed through changes in chloroplastic excitation pressure. Thus, concepts of photostasis and excitation pressure provide the context through which one can explain the congruence of phenotypic plasticity and photosynthetic performance associated with cold acclimation and photoacclimation. Photosynthetic organisms can sense changes in temperature and irradiance through modulation of the redox state of the photosynthetic electron transport chain, which, in turn, governs phenotype through the regulation of nuclear gene expression and chloroplast biogenesis. We suggest that elucidation of the molecular mechanism(s) by which excitation pressure regulates phenotypic plasticity and photosynthetic performance will be essential in addressing the challenge of maintaining or perhaps enhancing crop productivity under the suboptimal growth conditions predicted to occur as a consequence of climate change.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3