In-situ manipulations of aquatic optical depth and its effect on small unoccupied aerial systems–derived spectral reflectance

Author:

Holzbauer-Schweitzer Brandon K.1,Nairn Robert W.1

Affiliation:

1. University of Oklahoma, Center for Restoration of Ecosystems and Watersheds, 202 West Boyd Street, Room 334, Norman, Oklahoma 73019-0390, United States.

Abstract

The collection of spectral data with sensors fixed to various platforms (e.g., satellites, occupied aerial vehicles, and small unoccupied aerial systems (sUAS)) has allowed for the estimation of optically active constituents (OACs) common in surface waters. However, in small, complex, and optically shallow waters where multiple OACs (e.g., chlorophyll-a and total suspended solids) impact the spectral signature, these technologies have experienced significant limitations. Altering the scale at which these examinations are performed on surface waters (e.g., ponds and lakes) to mesocosm systems (37 cm in height and 30 cm in diameter) provides information on the interactions between multiple OACs and insight on the impact aquatic optical depth has on remotely sensed spectra. This field study examines optically shallow and optically deep mesocosm systems simulated in five-gallon buckets to determine the role aquatic optical depth has on developing accurate surface-water quality models. Results demonstrated an accurate representation of OACs in optically deep mesocosms compared with optically shallow mesocosms when assessed with sUAS (i.e., relative percent differences in predicted iron concentrations of −86 and 16 for optically shallow and deep waters, respectively). The interferences observed under these conditions were comparable to literature values when studying optically complex water bodies with hyperspectral data. This study provides a basis for understanding the benefits and limitations of monitoring in-situ water quality via sUAS.

Publisher

Canadian Science Publishing

Subject

Control and Optimization,Electrical and Electronic Engineering,Control and Systems Engineering,Automotive Engineering,Aerospace Engineering,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3