Abstract
A classical many-body problem composed of an infinite number of mass points coupled together by springs is quantized. The masses and the spring constants in this system are chosen in such a way that the motion of each particle is exponentially damped. Because of the quadratic form of the Hamiltonian, the many-body wave function of the system can be written as a product of two terms: a time-dependent phase factor which contains correlations between the classical motions of the particles, and a stationary state solution of the Schrödinger equation. By assuming a Hartree type wave function for the many-particle Schrödinger equation, the contribution of the time-dependent part to the single particle wave function is determined, and it is shown that the time-dependent wave function of each mass point satisfies the nonlinear Schrödinger–Langevin equation. The characteristic decay time of any part of the subsystem, in this model, is related to the stiffness of the springs, and is the same for all particles.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献