Affiliation:
1. Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada.
Abstract
The β scission (cracking) of branched carbenium ions have been observed in molecular dynamics simulations, possibly for the first time. Simulations were performed with molecular dynamics based on PW91 density functional theory, and which included three-dimensional periodic boundary replication of the unit cell to mimic long-range bulk effects. A rising-temperature algorithm was used to encourage reaction within the narrow time windows (∼10 ps) of the simulations. Twenty-eight simulations were performed, featuring alkyl ions in three different catalytic systems: the ionic liquid, [(C5H5NH+)5(Al2Cl7−)6]−, the chabazite zeolite, [AlSi23O48]−, and the chabazite zeolite, [Al4Si20O45(OH)3]−. Twenty-four runs began with unbranched sec-n-alkyl ions, but only one exhibited β scission, and only after branching to a tertiary ion and under extreme heating. In contrast, the four simulations that began with branched alkyl ions were all successful in demonstrating β scission at lower temperatures: 2,4,4-trimethyl-2-pentyl ion and 2,4-dimethyl-2-hexyl ion in each of the first two catalysts. The lifetimes of desorbed alkyl ions in the chabazite models were < 5 ps at 1000–1500 K. The β scission results support the classical Weitkamp et al. ( Appl. Catal. 1983, 8, 123 ) mechanism over the nonclassical Sie ( Ind. Eng. Chem. Res. 1992, 31, 1881 ) and the chemisorping Kazansky et al. ( J. Catal. 1989, 119, 108 ) mechanisms.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献