ADSORPTION OF CYCLOHEXANE AND BENZENE ON MIXED HYDROXIDES AND OXIDES OF MAGNESIUM AND ALUMINIUM

Author:

Razouk R. I.,Nashed Sh.,Antonious F. N.

Abstract

Seven mixed hydroxides of magnesium and aluminium were prepared, and phase and structural changes accompanying their dehydration were investigated by differential thermal analysis, thermogravimetric analysis, and X-ray diffraction techniques. The differential thermal analysis curves possess 2 peaks corresponding to those of parent hydroxides together with a new peak, and the thermogravimetric analysis curves show slight inflections. X-ray diffraction patterns of the mixed hydroxides possess the characteristic lines of the parent hydroxides together with three to five new intense lines which might indicate the formation of a double hydroxide. When the mixed hydroxides are progressively heated they give rise to products possessing patterns which first become diffuse and ultimately pass mainly into the spinel pattern.Adsorption isotherms of cyclohexane and benzene were measured on the mixed hydroxides and their dehydration products. Specific surface areas calculated by the application of the Brunauer, Emmett, Teller (B.E.T.) equation are in general in good agreement for the two adsorbates. The surface area increases with rise of dehydration temperature to a maximum at 500–600 °C and then decreases with further rise in temperature. This behavior is common to crystalline oxide systems and may be ascribed to the intermingling of decomposition, re-crystallization, and sintering processes. Variations in the molecular ratio of the mixed oxides (as much as 20-fold), and in the method of preparation, do not much alter the surface area.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3