Theoretical and experimental conformational preferences of the aldehyde and fluoroaldehyde groups in 2-methylbenzaldehyde, 2-trifluoromethylbenzaldehyde, and 4-chloro-2-methylbenzoyl fluoride. Proximate couplings

Author:

Schaefer Ted,Salman Salman R.,Wildman Timothy A.

Abstract

On the basis of long-range spin–spin coupling constants, the O-syn conformation of 2-methylbenzaldehyde in CCl4 solution at 305 K is favored over the O-anti form by a free energy of 0.53 kJ/mol. This number is compatible with other experiments, as well as with STO-3G MO calculations in which the geometry of the substituents is optimized. The latter yield 0.52 kJ/mol in the internal energy difference. In benzene solution, 2-trifluoromethylbenzaldehyde exists in the O-anti form to the extent of at least 95% at 305 K. In CCl4 solution at this temperature, the population of the O-syn conformer of 4-chloro-2-methylbenzoyl fluoride is likely 75% or more of the total, in semiquantitative agreement with STO-3G optimization procedures. Substantial proximate couplings exist between 1H and 19F nuclei in the sidechains of the latter two compounds and are compared with INDO MO FPT computations. These yield negative values for [Formula: see text] in 2-trifluoromethylbenzaldehyde, whereas the experimental value is 2.23 Hz.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3