Author:
Ferraro Steven P.,Cole Faith A.,DeBen Waldemar A.,Swartz Richard C.
Abstract
Power-cost efficiency (PCEi = (n × c)min/(ni × ci), where i = sampling scheme, n = minimum number of replicate samples needed to detect a difference between locations with an acceptable probability of Type I (α) and Type II (β) error (e.g. α = β = 0.05), c = mean "cost," in time or money, per replicate sample, and (n × c)min = minimum value of (n × c) among the i sampling schemes) is the appropriate expression for comparing the cost efficiency of alternative sampling schemes having equivalent statistical rigor when the statistical model is a redistribution for comparisons of two means. PCEs were determined for eight macrobenthic sampling schemes (four sample unit sizes and two sieve mesh sizes) in a comparison of a reference site versus a putative polluted site in Puget Sound, Washington. Laboratory processing times were, on average, about 2.5 times greater for the [Formula: see text]- than the [Formula: see text] samples. The 0.06-m2, 0- to 8-cm-deep sample unit size and 1.0-mm sieve mesh size was the overall optimum sampling scheme in this study; it ranked first in PCE on 8 and second on 3 of 11 measures of community structure. Rank order by statistical power of the 11 measures for this scheme was Infaunal Index > log10 (mollusc biomass + 1) > number of species > log10 (numerical abundance) > log10 (polychaete biomass + 1) > log10 (total biomass + 1) > log10 (crustacean biomass + 1) > McIntosh's index > 1 – Simpson's Index > Shannon's Index > Dominance Index.
Publisher
Canadian Science Publishing
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献