Oxygen isotopic and chemical compositions of rocks of the Sudbury Basin, Ontario

Author:

Ding T. P.,Schwarcz H. P.

Abstract

The whole-rock oxygen isotopic composition of the main units of the Sudbury Irruptive and surrounding rocks has been studied, using samples from two traverses of the North Range and one of the South Range. Norite has an average δ18O of 6.7‰, about 1‰ greater than that of fresh oceanic basalts, and similar to that of some continental basalts. Granophyre is slightly richer in 18O (δ18O = 7.3‰). In neither unit is there significant correlation between δ18O and SiO2 content or degree of alteration as estimated by water content or microscopic appearance. The pervasive hydrous alteration of norite and granophyre apparently occurred in the presence of a small volume of water whose isotopic composition was buffered by the igneous rocks. Inclusion-free devitrified glass ("melt rock") and matrix from the Onaping Formation have δ18O values in the range 6.2 – 12.1‰. Its average δ18O is 8.2‰, comparable to that of Archean gneiss [Formula: see text], as required by the model for the origin of the formation as a fallback breccia from a meteoritic impact. However, the chemical composition of the Onaping rocks requires an admixture of rocks much more mafic than typical Archean gneiss (e.g., greywackes or gabbros of the Southern Province). Norites of the South Range are 1‰ heavier than those of the North Range, possibly due to assimilation of 18O-rich rocks of the McKim Formation. It has been suggested that the granophyre was produced through assimilation of Onaping rocks by the norite; this is consistent with the oxygen isotopic composition of the three rock types but not with their chemical compositions, which show the granophyre to be more depleted in MgO than the Onaping Formation. The granophyre's chemical composition is consistent with an origin by differentiation from a magma with a composition equivalent to that of the transition (oxide-rich) gabbro.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3