Author:
Chan Catherine B.,MacPhail Ruth M.
Abstract
We hypothesized that altered insulin secretory patterns in obese (fa/fa) Zucker rats might be caused by changes in downstream stimulus–secretion coupling events, such as ATP-dependent potassium (KATP) channel activity. The functions of KATP-dependent and -independent pathways of insulin secretion were therefore compared in lean and fa/fa Zucker rat isolated islets. KATPchannel function was normal in fa/fa rat islets, as assessed by responsiveness to direct channel inactivators glybenclamide and quinine and by the receptor-mediated response to epinephrine and somatostatin. Altered sensitivity to glucose and mannoheptulose were explained by upstream alterations in glucose metabolism documented earlier. Despite normal inactivation of KATPchannels by ATP depletion of fa/fa rat islets, glucose-stimulated insulin secretion was not inhibited, leading to studies of a putative KATP-independent pathway. When islets were depolarized by incubating with 30 mM potassium and 0.25 mM diazoxide to bypass KATPchannels, glucose elicited a concentration-dependent response in both phenotypes. This response required glucose metabolism and Ca2+, as proven by experiments with nonmetabolizable glucose analogs and calcium chelation, but was only partially inhibited by a glycolytic inhibitor. Intermediates or products of oxidative metabolism are likely involved because α-ketoisocaproate also elicited a KATP-independent insulin response. The pattern of responses was similar in lean and fa/fa rat islets, indicating that neither of these pathways explains the insulin secretion by fa/fa rat islets depleted of ATP. In conclusion, phenotype-related differences in KATPchannel function were consistent with upstream changes in glucose metabolism in fa/fa rat islets. Further studies are required to understand the basis of insulin secretion in ATP-depleted islets from fa/fa rats.Key words: ATP-dependent K channels, insulin secretion, obesity, pancreatic islet, Zucker rat.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献