Free energies and entropies of transfer of hydrogen halides from water to aqueous solutions of tetrahydrofuran, dioxane, and 1,2-dimethoxyethane and the structuredness of the solvents

Author:

Datta Jayati,Kundu Kiron K.

Abstract

Standard free energies (ΔGt0) and entropies (ΔSt0) of transfer of hydrogen iodide from water to some aqueous solutions of tetrahydrofuran (THF), dioxane (D), and 1,2-dimethoxyethane (DME) have been determined by measuring the emf's of the cell: Pt, H2 (g, 1 atm)|KOH (m1), KI (m2), solvent|AgI, Ag at seven equidistant temperatures ranging from 5 to 35 °C. In each of these ethereal solvent systems ΔGt0 values of HI, as well as of HCl and HBr obtained from the literature, and particularly of the individual ions, suggest that while H+ is increasingly stabilized, halide ions are increasingly destabilized due to the influence of cosolvent-induced larger "basicity" and smaller "acidity" of the mixed solvents compared to that of water, and both conformed to the expected order: D < THF < DME. Moreover, the relative order: Cl > Br > I in all the solvent systems is ascribable to the combined effects of "acid–base" and "soft–soft" interactions and the superimposed quadrupolar interactions in the case of D and the charge transfer to solvent (CTTS) complexation effect, especially on I in the case of THF. Analysis of the entropie contributions, TΔSt0, and particularly of the relative order of ΔY (≡TΔSt0(H+) + TΔSt,ch0(X)) for X = Cl, Br, and I, in the light of the semi-quantitative theory proposed earlier by Kundu et al., reveals that at initial compositions, while THF promotes 3D structures of water, both D and DME break down the same; at higher compositions all the cosolvents disrupt the structure as usual due to packing imbalance. The nature and relative positions of ΔY–composition profiles also suggest that while increase of hydrophobic groups of the cosolvents increases the stabilization, increase in hydrophilicity or H-bonding sites decreases the stabilization of the 3D structure of water.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3