Experiments and numerical modeling of baffle configuration effects on the performance of sedimentation tanks

Author:

Razmi A.M.1,Bakhtyar R.1,Firoozabadi B.2,Barry D.A.1

Affiliation:

1. Laboratoire de technologie écologique, Institut d'ingénierie de l'environnement, Faculté de l'environnement naturel, architectural et construit (ENAC), Station 2, Ecole polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

2. School of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran.

Abstract

The hydraulic efficiency of sedimentation basins is reduced by short-circuiting, circulation zones and bottom particle-laden jets. Baffles are used to improve the sediment tank performance. In this study, laboratory experiments were used to examine the hydrodynamics of several baffle configurations. An accompanying numerical analysis was performed based on the 2-D Reynolds-averaged Navier–Stokes equations along with the k-ε turbulence closure model. The numerical model was supplemented with the volume-of-fluid technique, and the advection–diffusion equation to simulate the dynamics of particle-laden flow. Model predictions compared well with the experimental data. An empirical function was constructed to indicate the location and amount of sediment collected in the tank. Hydraulic performance was determined for given baffle locations and heights. The results revealed that, for the laboratory setup, a baffle half way along its length decreases its performance, while a baffle much closer to its inlet and with height 25∼30% of water depth improves efficiency.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3