Automated scaffolding safety analysis: strain feature investigation using support vector machines

Author:

Sakhakarmi Sayan1,Arteaga Cristian1,Park JeeWoong1,Cho Chunhee2

Affiliation:

1. Department of Civil and Environmental Engineering and Construction, the University of Nevada, Las Vegas, 4505 S. Maryland Pkwy., Las Vegas, NV 89154, USA.

2. Department of Civil and Environmental Engineering, University of Hawaii at Manoa, 2500 Campus Road, Honolulu, HI 96822, USA.

Abstract

This study developed a methodology that can use real-time strain data for the assessment of scaffolding safety conditions. The researchers identified 23 safety cases of individual member failure with generic global failure for a four-bay, three-story scaffold model and used scaffold member strain values to identify potential failure cases. A computer simulation on the scaffold model generated the strain datasets required for classification with a support vector machine (SVM). The SVM classification demonstrated a stable prediction accuracy after training with a certain number of strain datasets. Furthermore, the 2nd order polynomial kernel function resulted in better prediction compared to other SVM kernel functions. These results imply that the real-time assessment of scaffolding structures is possible with a limited number of training data for machine-learning classification.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3