An application framework for development of a maintenance management system based on building information modeling and radio-frequency identification: case study of a stadium building

Author:

Kameli Mohsen1,Majrouhi Sardroud Javad1,Hosseinalipour Mojtaba2,Behruyan Manuchehr1,Ahmed Syed M.3

Affiliation:

1. Department of Civil Engineering, College of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

2. Department of Construction, Faculty of Architecture and Urban Planning, Shahid Beheshti University, Iran.

3. Department of Construction Management, East Carolina University, Greenville, NC 27858, USA.

Abstract

Identifying, tracking, controlling, and managing facilities and the associated problems are critical tasks in facility management. In addition, the facility maintenance information needs to be constantly updated, which leads to an extra workload for staff using paper and two-dimensional drawings. To overcome these challenges, a system based on building information modeling (BIM) and radio-frequency identification (RFID) is developed for managing and maintaining facilities. The proposed system simultaneously connects the BIM model using industry foundation class (IFC) data structures, the facility maintenance database, and the RFID reader and shows the accessible data through the internet on a handheld screen. This approach provides a general framework for maintenance information management of building facilities. The framework invokes the proposed system to be for preventive maintenance and the reports based on it. The system is implemented in the case study of the building maintenance of a soccer stadium to validate the proposed system and demonstrate the system’s effectiveness for maintenance management.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3