Nonlinear viscoelastic approach to model damage-associated performance behavior of asphaltic mixture and pavement structure

Author:

Ban Hoki1,Im Soohyok2,Kim Yong-Rak3

Affiliation:

1. Department of Civil and Environmental Engineering, 203 1st Engineering Building, Dankook University, Yongin-si, Gyeonggi-do, 448-701, South Korea

2. Department of Civil Engineering, 362H Whittier/NTC Building, University of Nebraska, Lincoln, NE 68583, USA.

3. Department of Civil Engineering, 224 Engineering Building, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, South Korea.

Abstract

This paper presents an integrated experimental–numerical effort to more accurately model the damage characteristics of asphalt mixtures and pavement structures than conventional elastic and (or) linear viscoelastic approaches can. To this end, Schapery's nonlinear viscoelastic constitutive model was implemented into a finite element software via user defined subroutine (user material, or UMAT) to analyze an asphalt pavement subjected to heavy truck loads. Then, a series of creep and recovery tests were conducted at various stress levels and at different temperatures to obtain the stress-dependent and temperature-sensitive viscoelastic material properties of asphalt mixtures. With the viscoelastic material properties characterized and the UMAT code, a typical pavement structure subjected to repeated heavy truck loads was modeled with the consideration of the effect of material nonlinearity with a realistic tire loading configuration. Three-dimensional finite element simulations of the pavement structure present significant differences between the linear viscoelastic approach and the nonlinear viscoelastic modeling in the prediction of pavement performance with respect to rutting and fatigue cracking. The differences between the two approaches underline the importance of proper and more realistic characterization of pavement materials and should be addressed in the process of performance-based pavement design.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3