A new collection of compressed damage indices for multi-damage detection of cold formed steel shear walls based on neural network ensembles

Author:

Zahedi Tajrishi Fatemeh1,Mirza Goltabar Roshan Alireza1,Zeynalian Mehran2,Vaseghi Amiri Javad1

Affiliation:

1. School of Civil Engineering, Babol University of Technology, Mazandaran, Iran.

2. Department of Civil Engineering, The University of Isfahan, Isfahan, Iran.

Abstract

This study presents a methodology that utilizes a new combination of two compressed damage indices as input data of an artificial neural network (ANN) ensemble to detect multi-damages in the braces of cold formed steel shear walls. To identify an efficient input data for ANN, first, three main groups of damage indices are considered: modal parameter-based damage indices; frequency response functions (FRFs)-based damage indices and time series-based damage indices. Furthermore, principal component analysis (PCA) technique is applied to reduce the dimensions of FRFs and time series-based input pattern. By a sensitivity study, two suitable damage indices of PCA-compressed time series data and PCA-compressed FRFs are identified and then combined to produce a new efficient input data for a hierarchy of ANN ensembles. The numerical results show that the ANN ensemble-based damage detection approach with the proposed collection of two damage indices is effective and reliable.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3