Enhancing unsupervised video-based vehicle tracking and modeling for traffic data collection

Author:

Zaki Mohamed H.1,Sayed Tarek11,Billeh Moataz11

Affiliation:

1. Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.

Abstract

Video-based traffic analysis is a leading technology for streamlining transportation data collection. With traffic records from video cameras, unsupervised automated video analysis can detect various vehicle measures such as vehicle spatial coordinates and subsequently lane positions, speed, and other dynamic measures without the need of any physical interconnections to the road infrastructure. This paper contributes to the unsupervised automated video analysis by addressing two main shortcomings of the approach. The first objective is to alleviate tracking problems of over-segmentation and over-grouping by integrating region-based detection with feature-based tracking. This information, when combined with spatiotemporal constraints of grouping, can reduce the effects of these problems. This fusion approach offers a superior decision procedure for grouping objects and discriminating between trajectories of objects. The second objective is to model three-dimensional bounding boxes for the vehicles, leading to a better estimate of their geometry and consequently accurate measures of their position and travel information. This improvement leads to more precise measurement of traffic parameters such as average speed, gap time, and headway. The paper describes the various steps of the proposed improvements. It evaluates the effectiveness of the refinement process on data collected from traffic cameras in three different locations in Canada and validates the results with ground truth data. It illustrates the effectiveness of the improved unsupervised automated video analysis with a case study on 10 h of traffic data collection such as volume and headway measurements.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Reference25 articles.

1. Clustering of Vehicle Trajectories

2. Safety evaluation of right-turn smart channels using automated traffic conflict analysis

3. Beymer, D., McLauchlan, P., Malik, J., and Coifman, B. 1997. Tracking vehicles in congested traffic. In IEEE Proceedings of Conference on Intelligent Vehicles. pp. 495–501. 10.1109/IVS.1996.566366.

4. Urban road user detection and classification using 3D wire frame models

5. A Review of Computer Vision Techniques for the Analysis of Urban Traffic

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3