Affiliation:
1. Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
Abstract
Video-based traffic analysis is a leading technology for streamlining transportation data collection. With traffic records from video cameras, unsupervised automated video analysis can detect various vehicle measures such as vehicle spatial coordinates and subsequently lane positions, speed, and other dynamic measures without the need of any physical interconnections to the road infrastructure. This paper contributes to the unsupervised automated video analysis by addressing two main shortcomings of the approach. The first objective is to alleviate tracking problems of over-segmentation and over-grouping by integrating region-based detection with feature-based tracking. This information, when combined with spatiotemporal constraints of grouping, can reduce the effects of these problems. This fusion approach offers a superior decision procedure for grouping objects and discriminating between trajectories of objects. The second objective is to model three-dimensional bounding boxes for the vehicles, leading to a better estimate of their geometry and consequently accurate measures of their position and travel information. This improvement leads to more precise measurement of traffic parameters such as average speed, gap time, and headway. The paper describes the various steps of the proposed improvements. It evaluates the effectiveness of the refinement process on data collected from traffic cameras in three different locations in Canada and validates the results with ground truth data. It illustrates the effectiveness of the improved unsupervised automated video analysis with a case study on 10 h of traffic data collection such as volume and headway measurements.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献