Measurement and numerical modeling studies of the highest bottom shear stress in the Randle Reef area

Author:

He Cheng1,Scott Eric2,Graham Matthew3,Binns Andrew4

Affiliation:

1. National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, ON L7R 4A6, Canada.

2. Department of Mechanical Engineering, McMaster University, Hamilton, Canada.

3. Sediment Remediation Unit, Environment Canada, 867 Lakeshore Road, Burlington, ON L7R 4A6, Canada.

4. Department of Civil and Environmental Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.

Abstract

The purpose of this study was to investigate the highest bottom shear stress, induced by wind in an area of Hamilton Harbour, Ontario, Canada known as Randle Reef. The study was conducted in support of a component of a contaminated sediment remediation plan utilizing a thin layer of sand to manage contaminated sediments. Toward this end, four acoustic Doppler current profilers (ADCPs) were deployed at two locations in the study region to measure velocity profiles for the purpose of indirectly measuring bottom shear stress (BSS) and model verification. There is no easy way to directly measure BSS in the field. As a result, the use of the logarithmic-profile method from the ADCP measured high resolution velocity profiles in the bottom layer was explored. This approach, according to our best knowledge, has not been published for a wind driven flow in a small open water body. To use the indirectly measured BSS to estimate the highest BSS in the study area, a three-dimensional hydrodynamic model was adopted to provide the spatial and temporal information of the bottom flow. The results showed that the modeled and measured flow velocity components agreed reasonably well at most of the water depths with the correlation coefficients being greater than 0.6. However, agreements between the modeled and measured bottom flow speeds were worse than expected due to the error contributions from both the modeled velocity components. Therefore, the modeled flow speed required rescaling based on ADCP velocity measurements before it could be deemed reliable. This is especially important in estimation of the BSS with a quadratic formula because the calculated BSS is proportional to the square of the speed.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling study of dredging induced sediment plume transport in Hamilton Harbour;Canadian Journal of Civil Engineering;2020-08-04

2. Seasonal, Spring‐Neap, and Tidal Variation in Cohesive Sediment Transport Parameters in Estuarine Shallows;Journal of Geophysical Research: Oceans;2019-11

3. Erodibility study of sediment in a fast-flowing river;International Journal of Sediment Research;2019-04

4. Contaminated Aquatic Sediments;Water Environment Research;2015-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3