A new analytical model for dip modified velocity distribution in fully developed turbulent open channel flow

Author:

Mahananda Minakshee1,Hanmaiahgari Prashanth Reddy12,Ojha Chandra Shekhar Prasad3,Balachandar Ram2

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

2. Department of Civil and Environmental Engineering, University of Windsor, Windsor, ON N9B 1E1, Canada.

3. Department of Civil Engineering, Indian Institute of Roorkee, Roorkee, Uttarakhand, 247667, India.

Abstract

This paper presents a new analytical model to predict the streamwise time-averaged velocity profile affected by the dip phenomenon in open channel flows. The novel approach of the present study is that the Finley wake law has been used instead of Coles’ wake law for the outer layer. To validate the new analytical model, six high quality experiments were conducted in a hydraulically rough bed open channel flow by considering variations of aspect ratio, defined as the ratio of the width of the channel to the depth of flow, from 2 to 4. In these controlled experiments, the time-averaged velocities were measured using a Nortek Vectrino-plus acoustic Doppler velocimeter. In addition, 14 sets of available experimental data, including five field experiments conducted across the globe were also used to test the performance of the proposed model. The proposed model, the Finley-dip-modified-log-wake law (FDMLWL), was used to develop a semiempirical equation to compute the dip position as a function of the dip correction factor and the wake parameter. In addition, using the experimental data and FDMLWL, an empirical equation was developed to compute the dip correction factor for hydraulically smooth open channel flows. The comparison of the FDMLWL model with the experimental data belonging to hydraulically smooth, transition, and rough regimes has consistently indicated better representation of the velocity dip phenomenon. The FDMLWL model has also been compared with other analytical models available in the literature and the superior performance of the proposed model is further observed. Finally, based on the satisfactory validation between experimental data and FDMLWL, it is inferred that the proposed model is better suited for modeling zero velocity gradient at the boundary layer edge, as in open channel flows with dip phenomenon.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3