Affiliation:
1. School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea.
Abstract
The majority of precast concrete electric pole structures (EPSs) consist of prestressed concrete and reinforced concrete hybrid members with high slenderness ratios. Currently, large prestressing (PS) forces are being applied to EPSs to carry heavier weights of electric transformer machineries and to reduce deflection by increasing structural stiffness. Moreover, when EPSs are exposed to an outdoor environment year-round, their durability decreases. Therefore, the objectives of this study are to transform the failure behavior of EPSs from brittle to ductile by varying the number of PS tendons and steel rebars, and to improve the ductility and durability of the EPS by using short polypropylene fiber-reinforced concrete to control crack formation and propagation. Six different types of EPS specimens were manufactured and tested to evaluate their maximum flexure capacity and to verify their ductility behavior. The results showed that the modified EPSs displayed ductile failure behavior while either maintaining their original flexural strength capacity or improving it compared with the current EPSs sold on the market.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献