A comprehensive collapse fragility assessment of moment resisting steel frames considering various sources of uncertainties

Author:

Beheshti-Aval S.B.1,Khojastehfar E.1,Noori M.2,Zolfaghari M.R.1

Affiliation:

1. Civil Engineering Faculty, K.N. Toosi University of Technology, Tehran, Iran.

2. California Polytechnic State University, USA; International Institute for Urban Systems Engineering, Southeast University, China.

Abstract

Different sources of uncertainties contribute to the collapse and safety assessment of structures. In this paper, impact of construction quality (CQ) is considered in developing analytical collapse fragility curves for moment resisting steel frames. Furthermore, the interaction of this source of uncertainty with epistemic uncertainty inherent in modeling parameters, due to lack of knowledge and inaccuracy of predictor equations, is investigated. Beam strength, column strength, beam ductility, and column ductility meta-variables are defined as modeling parameters which are being suffered by informal uncertainty. Quadratic equations for the mean and the standard deviation of collapse fragility curves are derived by utilizing response surfaces, which are interpolated to analytically-derived values considering realizations for modeling variables and for various levels of construction quality. To the best of the authors’ knowledge, interaction of modeling and CQ uncertainty in analytical collapse fragility curve has not been considered in previous investigations. A fuzzy rule-based method is applied to employ the effects of uncertainty due to CQ. Using Monte Carlo simulation for the modeling variables and the construction quality index, and subsequently computing response surface coefficients via a fuzzy inference system, and finally deriving collapse fragility curve parameters through response surfaces, result in collapse fragility curves of structures. In developing these curves, different sources of uncertainties are involved, ranging from lexical to informal and stochastic types. It is concluded that neglecting the effects of these sources leads to the underestimation of collapse fragility probability. This shows the importance of considering modeling and construction quality uncertainty effects on collapse fragility curves. It is shown that for a sample moment resisting steel frame collapse probability is increased 53% and 60% for 10% and 2% probability of exceedance in 50 years seismic hazard levels, respectively, while interaction of CQ and modeling uncertainties are considered in comparison with neglecting them. Otherwise, if only modeling uncertainty is involved, this increment is evaluated at 42% and 16%, respectively for the aforementioned probabilities of exceedance.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3