Mature fine tailings consolidation through microbial induced calcium carbonate precipitation

Author:

Liang Jiaming11,Guo Zhengyang11,Deng Lijun11,Liu Yang11

Affiliation:

1. Department of Civil and Environmental Engineering, University of Alberta, 9211 – 116 St. NW, Edmonton, AB T6G 1H9, Canada.

Abstract

The performance and mechanisms of a microbial induced calcite precipitation (MICP)-assisted mature fine tailings (MFT) consolidation method was assessed. Mature fine tailings samples of 35 wt% and 60 wt% were treated with MICP by ureolysis. The undrained shear strength of treated MFT was measured to evaluate the effects of MICP on MFT consolidation. To investigate the surface interaction mechanisms involved in the process, the size and shape of MFT particles were observed using scanning electron microscopy. The results showed that ureolysis-driven MICP can accelerate raw MFT consolidation, leaving compact sludge with significantly enhanced shear strength within 24 h of the experiment.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3