Author:
Sundaramurthy V,Eswaramoorthi I,Lingappan N
Abstract
A series of B-MCM-41 samples has been synthesized with a wide range of boron content (SiO2:B2O3 ratio from 20 to 200), using ethyl silicate ester-40 (ES-40) as the silica source and characterized by XRD, BET, FT-IR, 11B-MAS NMR, SEM, pyridine adsorption, TPDA, and chemical analysis. The interplanar d100 spacing varies from 40 to 45 Å, depending on the Si:B ratio. On calcination, a significant amount of four-coordinated boron is converted into less stable three-coordinated boron, and some boron is removed from the framework. The degree of deboronation increases with an increase of boron content of the sample. The B substitution in the MCM-41 framework results in only weak and mild acid sites. The isomerization of 1-hexene is found to be influenced by the boron content in the framework. The isomerization leads to both a hydrogen shift and skeletal rearrangement. The selectivity ratios of cis-2-hexene to trans-2-hexene and 2-hexene to 3-hexene were found to decrease with an increase of temperature and a decrease of the SiO2:B2O3 ratio of the catalysts. Skeletal isomerization starts at 250 °C, forming secondary products, and increases with an increase of temperature and an increase of boron content of the catalysts. Key words: ES-40, B-MCM-41, deboronation, catalyst characterization, XRD, BET, FT-IR, 11B-MAS NMR, SEM, 1-hexene isomerization, 2-hexene.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献