Snowfall interception on branches of three conifer species

Author:

Schmidt R. A.,Gluns David R.

Abstract

Measuring the mass of snow on cut branch tips soon after snowfalls during two winters provided comparisons of catch by Engelmann spruce (Piceaengelmannii Parry), subalpine fir (Abieslasiocarpa (Hook.) Nutt.), and lodgepole pine (Pinuscontorta var. latifolia Engelm.). Analysis of these and other reported measurements confirmed (i) snow bridging by cohesion, (ii) bouncing of snow crystals by elastic rebound, and (iii) branch bending as mechanisms that determine the sigmoidal growth curves characterizing snow interception relative to snowfall. The fraction of snowfall intercepted by the branches was largest when storm accumulations were 3–4 mm water equivalent, with low specific gravity (0.04–0.07). Percent catch in snowfalls with 10 mm water and low specific gravity was near 50% for Engelmann spruce and about 45% for subalpine fir and lodgepole pine, but values decreased to near 30% in 20-mm storms. Catch was inversely proportional to the density of snow accumulations in the specific gravity range 0.04–0.13. Average branch catch was only about 10% of a storm with 10 mm water equivalent at 0.13 specific gravity. Meteorological conditions were more important than branch growth form in determining snow interception amounts on the conifers tested. The results suggest, as a hypothesis, a computational function for the fraction of snowfall caught on conifer crowns.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3