Factors controlling seed dormancy and germination response of Brachypodium hybridum growing in the hot arid mountains of the Arabian Desert

Author:

Elgabra Masarra1,El-Keblawy Ali1,Mosa Kareem A.12,Soliman Sameh3

Affiliation:

1. Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE.

2. Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.

3. Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE.

Abstract

Seed dormancy and germination have been studied in the genetic model Brachypodium species complex in cooler, moist higher latitudes. Studying environmental factors in arid mountains affecting dormancy and germination in Brachypodium complex could determine the factors controlling these processes. This study assesses the impacts of temperature during seed maturation, seed after-ripening, drought, photoperiod, and thermoperiod on final germination and germination rate index of B. hybridum in the Arabian Desert. Seeds were germinated under dark or light conditions and under different ratios of red:far-red light, with three diurnal thermoperiods. The final germination percentage was significantly greater at 15/25 °C and 20/30 °C than at 25/35 °C and in light rather than in darkness. Seeds that reached maturity at 15/25 °C attained greater germination rates and faster germination than those that reached maturity at 20/30 °C. One-year after-ripening enhanced the final germination percentage and reduced photoperiod requirements. Light quality did not affect final germination percentage. The seeds tolerated drought of up to –0.8 MPa polyethylene glycol. The tolerance of B. hybridum seeds produced at higher thermoperiods to moderate levels of osmotic stress and their higher dormancy indicate that this species has the potential to survive the projected global warming in its native and introduced ranges.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3