Anatomical and ultrastructural studies on gelatinous fibers in the organs of non-woody xerophytic and hydrophytic species

Author:

Piva Tayeme Cristina1,Machado Silvia Rodrigues2,Scremin-Dias Edna1

Affiliation:

1. Postgraduate Program in Plant Biology, Federal University of Mato Grosso do Sul – UFMS, Center of Biological and Health Sciences, 79070-900 Campo Grande, Mato Grosso do Sul State, Brazil.

2. São Paulo State University – UNESP, Institute of Biosciences, Department of Botany and Centro de Microscopia Eletrônica, 18618-970 Botucatu, São Paulo State, Brazil.

Abstract

Gelatinous fibers (G-layer) occur widely in various organs and plant tissues of both primary and secondary origin, but they are best known in tension wood. Here, we describe the occurrence, distribution patterns, and structural features of G-fibers in non-woody species of xerophytes and hydrophytes in Brazilian Cerrado (dry soil) and Chaco (wet or periodically waterlogged soils). G-fibers were present in all of the studied species, but were more abundant and more developed in xerophytes. They were associated with the phloem of leaves and primary stems and with the xylem of three xerophytic species that exhibited incipient secondary growth. The G-layer was non-lignified and characterized by greater thickness, lower density, and loose appearance in relation to the secondary layers. Under a transmission electron microscope, G-fibers displayed two secondary parietal layers (S1 and S2) in Prosopis rubriflora Hassle. (xerophyte), three secondary layers (S1, S2, and S3) in Eriosema campestre Benth. var. campestre (xerophyte), and a single secondary layer (S1) in Ludwigia leptocarpa Nutt. (hydrophyte). In P. rubriflora, mature G-fibers exhibited a loose-appearing electron-lucent region (transition zone) between G- and S-layers (secondary layers). In addition to mechanical support, this study suggests the involvement of G-fibers in water storage.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3