New framework for volumetric constitutive behaviour of compacted unsaturated soils

Author:

Kodikara Jayantha1

Affiliation:

1. Geomechanics Group, Department of Civil Engineering, Monash University, Victoria 3800, Australia.

Abstract

Volumetric behaviour is a fundamental consideration in unsaturated soil constitutive modelling. It is more complex than when the soil is saturated, as unsaturated soils exhibit a range of responses such as swelling and collapse under wetting and shrinkage and cracking during drying. While significant advances have been made, it is still difficult to generally explain all patterns of behaviour. This paper presents a new framework for modelling volumetric response of unsaturated soils with emphasis on compacted soils. The framework uses void ratio (e), moisture ratio (ew), and net stress (p) as the main constitutive variables and suction as a dependent variable. This choice of ewas a main constitutive variable is theoretically sound and is more attractive than the use of suction, which is relatively difficult to measure and displays significant hysteresis during drying and wetting. The framework incorporates the well-known compaction curve making it easily applicable to practical situations. Within the overall e–ew–p space, the operative space is constrained by three main surfaces; namely, loading–wetting state boundary surface, tensile failure surface, and the saturated plane. The conceptual basis for these state surfaces is described and the framework is qualitatively validated against observed behaviour of compacted soils.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3