THE HYDROGEN–CHLORINE SYSTEM IN THE MM PRESSURE RANGE: I. ENERGY DISTRIBUTION AMONG VIBRATIONALLY EXCITED STATES

Author:

Findlay F. D.,Polanyi J. C.

Abstract

When atomic plus molecular hydrogen coming from a Wood's discharge tube are mixed with molecular chlorine, infrared emission is observed (1). At low reagent pressures, ~10−2 mm Hg, this emission can be related to the relative rate of the reaction H + Cl2 → HCl†ν + Cl proceeding to form HCl in vibrationally excited states ν = 1–6, of the ground electronic state. In the present work this system has been investigated for the first time at ~100 × the reagent pressure (~1 mm Hg). The reaction was shown to proceed by a chain mechanism. The translational–rotational temperature was 1300 ± 100 °K under the experimental conditions normally used. The vibrational distribution was notable for the presence of vibrators in levels ν = 7 and 8, which are respectively 4 and 10 kcal higher in energy than the exothermicity of the H + Cl2 reaction. The population in these levels appeared to be related to that in the levels with [Formula: see text]; it was proposed that vibrational–vibrational exchange among these lower levels was responsible for populating the higher ones. A simple model yielded a collision efficiency for HCl†ν=1 + HCl†ν=6 → HCl†ν=7 + HCl†ν=0, of Z1,6t = 6 × 103 collisions per transfer. Addition of HCl to the reaction mixture brought about a redistribution among vibrationally excited states indicative of a fast vibrational transfer, HClν=0 + HCl†ν=2 → 2 HCl†ν=1.At reduced pressure of HCl† the stationary-state distribution among higher vibrational states approximated closely to that observed at 10−2 mm Hg total pressure (where collisional deactivation is insignificant), suggesting that collisional deactivation was not of major importance even at the pressure used in the present work. In order to account for the high translational–rotational temperature, in the absence of substantial vibrational deactivation, it was necessary to suppose that the greater part of the energy liberated by the reaction H + Cl2 went directly into translational and rotational motion of the products.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3