Author:
Wan J. K. S.,Strausz O. P.,Allen W. F.,Gunning H. E.
Abstract
The specific nature of the primary process in the reaction of 202Hg 6(3P1) atoms, photoexcited in natural mercury vapor by a cool 202Hg electrodeless discharge source, with CH3Cl has been examined in detail. Primary C–Cl bond scission occurs with unit efficiency. Quantum yields (φ) for the two primary modes of decomposition[Formula: see text]were found to have values of 0.71 (b) and 0.29 (a). The effect of various reaction parameters on the 202Hg enrichment in the calomel product has been investigated and the importance of isotopic mercury depletion in the reaction zone demonstrated by the use of intermittent illumination.A brief study of the reaction of ethyl, n-propyl, i-propyl, t-butyl, and n-amyl chlorides has revealed a relation between the molecular structure of the alleyl chloride and the efficiency of the monoisotopic route (a) to calomel formation. Thus, while the reactions of all the normal alkyl chlorides have φa values between 0.29 and 0.32, φa (isopropyl chloride) is only 0.22 and φa (t-butyl chloride) is 0.17.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献