Abundance, diversity, and resilience of nematode assemblages in forest soilsThis article is one of a selection of papers published in the Special Forum on Towards Sustainable Forestry — The Living Soil: Soil Biodiversity and Ecosystem Function.

Author:

Yeates G.W.1

Affiliation:

1. Landcare Research, Private Bag 11052, Palmerston North, New Zealand. (e-mail: yeatesg@landcareresearch.co.nz).

Abstract

Forest litter and soil may contain >10 × 106 individual nematodes·m–2 and, regionally, >400 species. Root-feeding nematodes may be pathogenic to young plants; microbial-feeding nematodes may increase turnover of the microbial pool; predacious and omnivorous nematodes represent higher trophic levels. The spatial distribution and abundance of nematode species in forests reflect soil type, soil fertility, climate, canopy and understorey plant species, litter depth, forest age, and management. Nematodes may be important in forest nurseries; they occur throughout the rooting depth of forest trees; hyphal-feeding species may influence mycorrhizae; and insect-vectored Bursaphelenchus species are a quarantine risk. Nematode populations interact with those of other soil animals (e.g., mites, tardigrades, enchytraeids, and protozoa). The diversity and abundance of the nematode assemblage make nematodes a useful indicator of soil condition and soil processes. Information available from forest systems suggests that, as long as physical disturbance is minimized and remaining trees or herb layer moderate the microclimate, logging and other forestry operations have only transitory effects on nematode populations. Extreme disturbance, such as bulldozing and slash-and-burn management, can significantly reduce nematode abundance and diversity. In contrast, management that enhances growth of understorey or herb layer can stimulate nematode populations. Each of these changes can be related to changes in food resource availability and environmental conditions, such as soil temperature and moisture. Although details of soil nematode contributions to nutrient processes in forest soils are sparse, that their populations are maintained through cycles of moderate management practices suggest that their beneficial contributions will also be maintained.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3