Effect of ethanol tolerance on release of acetylcholine and norepinephrine by rat cerebral cortex slices

Author:

Clark J. W.,Kalant H.,Carmichael F. J.

Abstract

The release of acetylcholine (ACh) by rat cerebral cortex slices, with and without electrical stimulation, and the effect of ethanol (EtOH) on this release were examined during the acquisition and loss of EtOH tolerance in vivo. ACh was measured by pyrolytic monodemethylation and gas–liquid chromatography. Electrical stimulation of control slices in medium containing diisopropyl phosphofluoridate (1.26 μM) and atropine (0.3 μM) increased ACh release by 88 ± 12%. Addition of 0.11 M EtOH to the medium had negligible effect on ACh release from unstimulated slices, but reduced the effect of stimulation to 51 ± 10%. After chronic treatment with EtOH by gavage or in a liquid diet, rats became tolerant to EtOH in vivo as shown by reduced impairment on the moving belt test. Slices from tolerant rats showed increased release of ACh in response to electrical stimulation and less inhibition of this response by added EtOH. The changes had disappeared by 2 weeks after cessation of EtOH treatment.Similar findings were obtained by measurement of release of [14C]ACh from slices preloaded with [14C]choline, except that electrical stimulation in the absence of EtOH appeared to cause a smaller increase in slices from chronic EtOH animals than from controls. This may reflect differences in isotope dilution. Release of [3H]norepinephrine was less affected by EtOH than that of ACh. The findings suggest that tolerance to EtOH is accompanied by increased ACh release by cortical neurones, as well as decreased direct inhibitory effect of EtOH on this, but do not permit any conclusion about the relative importance of such changes in various parts of the brain.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3