Myogenic regulation of arterial diameter: role of potassium channels with a focus on delayed rectifier potassium current

Author:

Cole William C,Chen Tim T,Clément-Chomienne Odile

Abstract

The phenomenon of myogenic constriction of arterial resistance vessels in response to increased intraluminal pressure has been known for over 100 years, yet our understanding of the molecular mechanisms involved remains incomplete. The focus of this paper concerns the potassium (K+) channels that provide a negative feedback control of the myogenic depolarization of vascular smooth muscle cells that is provoked by elevations in intraluminal pressure, and specifically, the contribution of delayed rectifier (KDR) channels. Our knowledge of the important role played by KDR channels, as well as their molecular identity and acute modulation via changes in gating, has increased dramatically in recent years. Several lines of evidence point to a crucial contribution by heteromultimeric KV1 subunit-containing KDR channels in the control of arterial diameter and myogenic reactivity, but other members of the KV superfamily are also expressed by vascular myocytes, and less is known concerning their specific functions. The effect of pharmacological modulation of KDR channels is discussed, with particular reference to the actions of anorexinogens on KV1- and KV2-containing KDR channels. Finally, the need for a greater understanding of the mechanisms that control KDR channel gene expression is stressed in light of evidence indicating that there is a reduced expression of KDR channels in diseases associated with abnormal myogenic reactivity and vascular remodelling.Key words: resistance arteries, myogenic response, potassium channels, delayed rectifier K+ current, KV channels, KV1, KV2.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3