The dual pathway in photocycloaddition of 1,3-diketonatoboron difluorides: excimer reactions

Author:

Chow Yuan L.,Cheng Xianen

Abstract

The lowest singlet excited state of dibenzoylmethanatoboron difluoride DBMBF2, a model compound of the BF2 complexes of 1,3-diketones, reacted with various simple olefins to give regiospecific and stereospecific photocycloadducts of 1,5-diketones similar to those from the de Mayo type reaction. DBMBF2 in acetonitrile exhibited two discrete fluorescences at 398 and 416 nm for the monomer and at 522 nm for the excimer; they were both quenched, but in different proportions, by a simple olefin. An "oxygen test" showed that the excimer of DBMBF2 is formed irreversibly in acetonitrile. The quantum yields of the photocycloaddition were shown to be proportional not only to olefin concentrations but also to DBMBF2 concentrations. Kinetic analysis has established that the total quantum yield is the sum of those arising from the interactions of the singlet excited DBMBF2 and its excimer, respectively, with an olefin, i.e., the sum of the quantum yields of exciplex and triplex pathways. The contributions from the two pathways are determined by the type of olefins and the range of DBMBF2 concentrations. For endocyclic olefins, the triplex pathway is more important and the corresponding photocycloaddition becomes very efficient as soon as the excimer starts to form in [DBMBF2] > 0.001 M. For the monosubstituted olefins, on the contrary, the exciplex pathway is always more important than the triplex pathway; they react primarily from the singlet excited state of DBMBF2. Key words: singlet state photocycloaddition, irreversible excimer formation, excimer cycloaddition, triplex and exciplex reactions.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3