Observations of seismo-electromagnetic earthquake precursor radiation signatures along Southern Californian fault zones: Evidence of long-distance precursor ultra-low frequency signals observed before a moderate Southern California earthquake episode

Author:

Dea Jack Y.,Richman Charles I.,Boerner Wolfgang-M.

Abstract

Although questioned for a long time, there is accumulating growing evidence for the existence of detectable seismo-electromagnetic phenomena worldwide. California is geologically as well as seismically a unique region for studying these phenomena in depth; and, in particular, the southern California geologic province with a multitude of offshore and inland fault zones with San Diego in its center. At the Naval Ocean Systems Center Low Frequency Noise Laboratory, San Diego CA., we monitor 0.1–10 Hz ultra-low frequency (ULF) and 10–40 Hz extremely low-frequency (ELF) signals using mu-metal loaded multitum search coil sensors, as well as 10–100 kHz very low-frequency signals using large 1 m diameter loop antennas. We have observed precursor seismo-electromagnetic emissions of several earthquake events. In this paper, we report on observations of broadband ULF signals before and during the Upland quake of April 17, 1990 (Ms = 4.6), centered 200 km N of San Diego. The signals were detected with the vertically oriented search coil sensor and not with the horizontally oriented sensors, which suggests a disturbed ionosphere as the most likely source of these signals. The large prequake ULF activity, the rapid decay of ULF activity after the quake, and the absence of any geomagnetic storms indicate a good correlation of the ULF activity with the Upland quake. Although the exact mechanisms for coupling geologic activity to the ionosphere is not known, we cite a number of hypotheses concerning these mechanisms. Based on this succinct overview, an interpretation of our radio observations of seismic activity is presented and extended to earthquake precursor or predictor studies. We are in the process of expanding this research with the building of more monitoring stations and the improvement of our measurement, data collection, formatting, and data processing capabilities.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3