Role of connexins in microvascular dysfunction during inflammation

Author:

Tyml Karel1

Affiliation:

1. Department of Medical Biophysics, and Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada.

Abstract

In arterioles, a locally initiated diameter change can propagate rapidly along the vessel length (arteriolar conducted response), thus contributing to arteriolar hemodynamic resistance. The response is underpinned by electrical coupling along the arteriolar endothelial layer. Connexins (Cx; constituents of gap junctions) are required for this coupling. This review addresses the effect of acute systemic inflammation (sepsis) on arteriolar conduction and interendothelial electrical coupling. Lipopolysaccharide (LPS; an initiating factor in sepsis) and polymicrobial sepsis (24 h model) attenuate conducted vasoconstriction in mice. In cultured microvascular endothelial cells harvested from rat and mouse skeletal muscle, LPS reduces both conducted hyperpolarization–depolarization along capillary-like structures and electrical coupling along confluent cell monolayers. LPS also tyrosine-phosphorylates Cx43 and serine-dephosphorylates Cx40. Since LPS-reduced coupling is Cx40- but not Cx43-dependent, only Cx40 dephosphorylation may be consequential. Nitric oxide (NO) overproduction is critical in advanced sepsis, since the removal of this overproduction prevents the attenuated conduction. Consistently, (i) exogenous NO in cultured cells reduces coupling in a Cx37-dependent manner, and (ii) the septic microvasculature in vivo shows no Cx40 phenotype. A complex role emerges for endothelial connexins in sepsis. Initially, LPS may reduce interendothelial coupling and arteriolar conduction by targeting Cx40, whereas NO overproduction in advanced sepsis reduces coupling and conduction by targeting Cx37 instead.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3