Hydrogen peroxide as oxidant in bio-mimetic catalysis by manganese porphyrin: Theoretical DFT studies

Author:

Drzewiecka-Matuszek Agnieszka1,Rutkowska-Zbik Dorota1,Witko Malgorzata1

Affiliation:

1. Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland.

Abstract

The aim of this study is to elucidate the geometry and electronic structure of various adducts that may be formed between manganese(III) (Mn(III)) porphyrin and hydrogen peroxide. Hydrogen peroxide may interact with Mn(III) porphyrin either as H2O2 or, after dissociation, as OOH. In the former, it may decompose into two hydroxo groups, which acquire OH character or an oxo group (=O) and a water molecule. Therefore, the following systems are considered: MnP(H2O2)+, MnP(H2O2)(OH), MnP(OH)3, [Formula: see text], MnPO+, MnPO(OH), MnP(OOH), MnP(OOH)(OH), and the possible transformations between them are taken into account. The reported studies are performed within the Density Functional Theory (DFT) method with the GGA-BP functional. The geometry and electronic structures of the structures found along the studied reaction pathways are discussed in terms of interatomic distances, valence angles, Mulliken charges, and spin densities. It was found that different active oxygen species may be formed in the reaction between Mn(III) porphyrin and hydrogen peroxide. As manganese is a transition metal, numerous possible spin states for each of the studied structures are found, where the relative energies of different multiplicities depend strongly on the ligands present in the complex. In view of the catalytic properties, all oxygen-containing ligands are negatively charged, which results in their behaviour as nucleophiles towards hydrocarbons. Finally, the analysis of charge and spin populations on different parts of the studied systems indicate the porphyrin ligand as active in charge transfer processes.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3