A density functional study of Rh13

Author:

Calaminici Patrizia1,Vásquez-Pérez José M.1,Espíndola Velasco Diego A.1

Affiliation:

1. Departamento de Quimica, CINVESTAV, Av. Instituto Politecnico Nacional 2508 A.P. 14-740 Mexico D.F. 07000, Mexico.

Abstract

A density functional study was performed for the Rh13 cluster using the linear combination of Gaussian-type orbitals density functional theory (LCGTO-DFT) approach. The calculations employed both the local density approximation (LDA) as well as the generalized gradient approximation (GGA) in combination with a quasi-relativistic effective core potential (QECP). Initial structures for the geometry optimization were taken along Born–Oppenheimer molecular dynamics (BOMD) trajectories. The BOMD trajectories were performed at different temperatures and considered different potential energy surfaces (PES). As a result, several hundred isomers of the Rh13 cluster in different spin multiplicities were optimized with the aim to determine the lowest energy structures. All geometry optimizations were performed without any symmetry restriction. A vibrational analysis was performed to characterize these isomers. Structural parameters, relative stability energy, harmonic frequencies, binding energy, and most relevant Kohn–Sham (KS) molecular orbitals are reported. The obtained results are compared with available data from the literature. This study predicts a low symmetry biplanarlike structure as the ground-state structure of Rh13 with 11 unpaired electrons. This isomer was first noticed by inspection of first-principle Born–Oppenheimer molecular dynamics (BOMD) simulations between 300 and 600 K. This represents the most extensive theoretical study on the ground-state structure of the Rh13 cluster and underlines the importance of BOMD simulations to fully explore the PES landscapes of complicated systems.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3