High-resolution electron spectroscopy and molecular structures of Cu–(2,2′-bipyridine) and Cu-(4,4′-bipyridine)

Author:

Wang Xu1,Lee Jung Sup1,Yang Dong-Sheng1

Affiliation:

1. Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA.

Abstract

Copper complexes of 2,2′-bipyridine (22BIPY) and 4,4′-bipyridine (44BIPY) were prepared in a laser-vaporization supersonic molecular beam source and identified by laser photoionization time-of-flight mass spectrometry. Electronic spectra and molecular structures were studied with pulsed-field ionization zero electron kinetic energy (ZEKE) electron spectroscopy, density functional theory (DFT) and second-order Møller–Plesset perturbation (MP2) calculations, and spectral simulations. Adiabatic ionization energies and metal–ligand and ligand-based vibrational frequencies of Cu–22BIPY and Cu–44BIPY were measured from the ZEKE spectra. Ground electronic states and molecular structures of the two complexes were determined by comparing the spectroscopic measurements with the theoretical calculations. The ground state of Cu–22BIPY ( 2 B1, C2v) has a planar bidentate structure with Cu binding to two nitrogen atoms and two pyridine molecules in the cis configuration. The ground state of Cu–44BIPY ( 2 A, C2) has a monodentate structure with Cu binding to one nitrogen and two pyridines in a twisted configuration. The ionization energy of Cu–22BIPY is considerably lower and its bond energy is much higher than that of Cu–44BIPY. The different ionization and dissociation energies are attributed to the distinct metal binding modes of the two complexes. It has been found that the DFT calculations yield the correct structures for the Cu–22BIPY complex, whereas the MP2 calculations produce the best structures for the Cu–44BIPY complex.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vibrational Spectroscopy of Small Hydrated CuOH+ Clusters;The Journal of Physical Chemistry A;2014-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3