A survey on pure sampling in quantum Monte Carlo methods

Author:

Rothstein Stuart M.1

Affiliation:

1. Departments of Chemistry and Physics, Brock University, St. Catharines, ON L2S 3A1, Canada.

Abstract

The most commonly employed diffusion Monte Carlo algorithm and some of its variants afford a way to sample configuration space from a so-called “mixed distribution”, the product of an input trial solution to the Schrödinger equation for the ground state and its unknown exact solution. This mixed distribution is sufficient to compute the ground state energy and other properties represented by operators that commute with the Hamiltonian. These energy-related properties are exact, save for a small bias introduced by the input trial function’s incorrect exchange nodes, the so-called “fixed-node error”. However, properties represented by operators that commute with the position operator are also of interest. When calculated by sampling from the mixed distribution, these properties are much more strongly biased by the input trial function. Our objective is to review methods that allow sampling from the desired “pure” distribution, one that is unbiased except for the exchange node error. Thereby, one accurately calculates physical properties such as the dipole and other electrical moments, electrical response properties of molecules, and particle distribution functions for clusters. We survey the results of calculations that employ pure-sampling methods through what has been published in year 2012. Our review also touches on truly exact sampling methods.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Reference92 articles.

1. Ceperley, D. M; Kalos, M. H. In Monte Carlo Methods in Statistical Physics; Binder, K., Ed.; Springer-Verlag, Berlin, 1979.

2. Schmidt, K. E.; Kalos, M. H. In Applications of the Monte Carlo Method in Statistical Physics; Binder, K., Ed.; Springer-Verlag, Berlin, 1984.

3. Quantum Monte Carlo and Related Approaches

4. Tanaka, S.; Rothstein, S. M.; Lester, W. A., Jr., Eds. Advances in Quantum Monte Carlo; American Chemical Society, Washington, 2012.

5. Anderson, J. B. Quantum Monte Carlo: Origins, Development, Applications; Oxford University Press, New York, 2007.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3