The water–boryl radical as a proton-coupled electron transfer reagent for carbon dioxide, formic acid, and formaldehyde — Theoretical approach

Author:

Tantawy Waled1,Hashem Ahmed2,Yousif Nabil1,Flefel Eman1

Affiliation:

1. Photochemistry Department, National Research Center, Dokki, Giza, Egypt.

2. Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.

Abstract

The thermochemistry of the hydrogen atom transfer reactions from the H2O–BX2 radical system (X = H, CH3, NH2, OH, F) to carbon dioxide, formic acid, and (or) formaldehyde, which produce hydroxyformyl, dihydroxymethyl, and hydroxymethyl radicals, respectively, were investigated theoretically at ROMP2/6–311+G(3DF,2P)//UB3LYP/6–31G(D) and UG3(MP2)-RAD levels of theory. Surprisingly, in the cases of a strong Lewis acid (X = H, CH3, F), the spin transfer process from the water–boryl radical to the carbonyl compounds was barrier-free and associated with a dramatic reduction in the B–H bond dissociation energy (BDE) relative to that of isolated water–borane complexes. Examining the coordinates of these reactions revealed that the entire hydrogen atom transfer process is governed by the proton-coupled electron transfer (PCET) mechanism. Hence, the elucidated mechanism has been applied in the cases of weak Lewis acids (X = NH2, OH), and the variation in the accompanied activation energy was attributed to the stereoelectronic effect interplaying in CO2 and HCOOH compared with HCHO. We ascribed the overall mechanism as a SA-induced five-center cyclic PCET, in which the proton transfers across the so-called complexation-induced hydrogen bond (CIHB) channel, while the SOMOB–LUMOC=O′ interaction is responsible for the electron migration process. Owing to previous reports that interrelate the hydrogen-bonding and the rate of proton-coupled electron-transfer reactions, we postulated that “the rate of the PCET reaction is expected to be promoted by the covalency of the hydrogen bond, and any factor that enhances this covalency could be considered an activator of the PCET process.” This postulate could be considered a good rationale for the lack of a barrier associated with the hydrogen atom transfer from the water-boryl radical system to the carbonyl compounds. Light has been shed on the water–boryl radical reagent from the thermodynamic perspective.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tuning the Activity of Antioxidants from a Chemical Point of View;Mini-Reviews in Organic Chemistry;2014-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3