Abstract
Modification of several semiconductors material surfaces with H4SiW12O40•nH2O have been carried out to produce an increase in the open circuit photopotential at the semiconductor/electrolyte interface (Voc) without changing the flat-band potential. The augmentation of Voc is shown to be attributed to a decrease of the minority carriers recombination at the semiconductor/electrolyte interface along with the suppression of Fermi level pinning. The enhancement of Voc and the electrocatalytic activity of the hydrogen evolution reaction in acidic medium of the derivatized electrodes is attributed to the Fermi level unpinning. Keywords: photoelectrodes, photoelectrocatalysis, pinning, modification improvement.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献