Cytological expression of early response to infection by Heterodera glycines Ichinohe in resistant PI 437654 soybean

Author:

Mahalingam R.,Skorupska H. T.

Abstract

The soybean PI 437654 is resistant to all known races of the soybean cyst nematode (SCN) in the U.S.A. and became a new source of resistance genes in cultivar development. Race 3, a wide-ranging nematode pathotype, was used to examine root cells of PI 437654 and susceptible 'Essex', 2, 3, and 5 days after inoculation (DAI). In initial response to SCN, both genotypes formed syncytia by cell wall dissolutions. Hypertrophy of syncytium component cells and hyperplasia of cells near syncytia were observed. At 2 DAI, incompatible response of PI 437654 to SCN was exhibited: limited cell hypertrophy, inhibition of syncytium growth, initiation of necrosis, and wall appositions. At 3 DAI, cellular events appeared to be a sum of the operative mechanisms for SCN resistance: irregular wall thickening, pronounced wall appositions, necrosis, and nuclear breakdown followed by cytoplasmic collapse. The cells surrounding the syncytia showed necrosis, wall apposition, and accumulation of electron-dense bodies. By 5 DAI, syncytia and neighboring cells were totally devoid of ground plasma and the degeneration process was completed. The normal route for early syncytium development in 'Essex' (increased number of organelles, intense vacuolization, accumulation of dense deposits in vacuoles, and wall ingrowths) suggests the involvement of portions of the developmental pathway of differentiating tissues in organogenesis. Early onset of SCN resistance 2 DAI in PI 437654 suggests rapid activation of genes in a cascade reaction leading to cell death. Key words : soybean, nematode, syncytium, cell death.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3