Abstract
To examine the role of lysyl residues in the activity of the enzyme, phosphoglyceromutase (PGM) from chicken breast muscle was chemically modified with trinitrobenzenesulfonate (TNBS) and pyridoxal 5′-phosphate. Trinitrophenylation resulted in modification of about nine lysines per mole of PGM with almost complete activity loss. Substrate (3-PGA) offered some protection to TNBS inactivation but cofactor (2,3-DPGA) did not. Reduction of the Schiff s base complex between pyridoxal 5′-phosphate and PGM gave irreversible inactivation of the enzyme. Inactivation was due to incorporation of 1 mol of pyridoxal 5′-phosphate per mole of PGM dimer through the ε-amino group of a lysyl residue. The effect of pyridoxal 5′-phosphate was specific for intact native enzyme and reaction with only one lysine per dimer was not due to induced conformational changes nor to dissociation of the reacted enzyme. 3-PGA prevented much of the reaction with pyridoxal 5′-phosphate with preservation of 70% of the activity and was a competitive inhibitor of the active site directed reagent. Cofactor (2,3-DPGA) acting noncompetitively, reduced the rate at which inactivation occurred with pyridoxal 5′-phosphate. Incorporation of 2,3-[32P]DPGA into PGM irreversibly inactivated with pyridoxal 5′-phosphate and NaBH4 was incomplete indicating hindrance to phosphorylation in the modified enzyme.The results indicate that a lysyl residue is located at or near the active site of PGM and that it is probably involved in the binding of 3-PGA.
Publisher
Canadian Science Publishing
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献